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Salvia miltiorrhiza, a traditional medical herb known as danshen, has been widely used in China to improve blood circulation, relieve 
blood stasis, and treat coronary heart disease.  S miltiorrhiza depside salt is a novel drug recently developed at the Shanghai Institute 
of Materia Medica; it contains magnesium lithospermate B (MLB) and its analogs, rosmarinic acid (RA) and lithospermic acid (LA), as 
active components.  The drug has been used in the clinic to improve blood circulation and treat coronary heart disease.  The pharma-
cological effects of the depside salt from S miltiorrhiza and its components have been extensively investigated.  Experimental studies 
have demonstrated that magnesium lithospermate B possesses a variety of biological activities, especially protective effects in the car-
diovascular system such as attenuation of atherosclerosis and protection against myocardial ischemia-reperfusion injury.  Rosmarinic 
acid and lithospermic acid also show beneficial effects on the cardiovascular system.  This paper reviews the recent findings regarding 
the mechanisms underlying the pharmacological actions of the active components of S miltiorrhiza depside salt, based on published 
works and our own observations.
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Introduction
The dried roots of Salvia miltiorrhiza, a traditional medical 
herb known as danshen, are used in China for the treatment of 
coronary heart disease, hepatitis, menstrual disorders, menos-
tasis, blood circulation diseases, and other cardiovascular dis-
eases[1].  The chemical constitutents of S miltiorrhiza have been 
studied for more than 60 years, but research has been focused 
mainly on the lipophilic diterpenoid quinones.  In recent 
decades, the pharmacological activities of the water-soluble 
components of S miltiorrhiza have been investigated, includ-
ing the active constituents magnesium lithospermate B (MLB, 
also called salvianolic acid B), rosmarinic acid (RA), lithosper-
mic acid (LA), prolithospermic acid, ammonium potassium 
lithospermate B, and magnesium salvianolate E oligomers of 
caffeic acids (Figure 1)[2].  Pharmacological studies have shown 
that water-soluble extracts from danshen can provide an alter-
native regimen for the prevention of ischemic heart disease[3].  
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In 2005, the State Food and Drug Administration (SFDA) of 
China approved a new drug application for S miltiorrhiza dep-
side salt, with MLB, RA, and LA as the primary active com-
pounds, for the treatment of chronic angina.  A clinical study 
showed that intravenous infusion of S miltiorrhiza depside salt 
had an observable therapeutic effect in patients with the coro-
nary heart disease angina pectoris[4].  In this article, we review 
the recent findings from our group and others in order to pres-
ent the pharmacological profiles and therapeutic applications 
of the main components of S miltiorrhiza depside salt — MLB, 
RA, and LA — and the mechanisms underlying their clinical 
efficacy.

Pharmacokinetic properties of S miltiorrhiza depside salt
An understanding of the pharmacokinetics and bioavailabil-
ity of herbal medicinal products can enable us to link data 
from pharmacological assays to clinical effects and also help 
in designing rational dosage regimens.  The pharmacokinetic 
properties of S miltiorrhiza depside salt have been investigated 
using liquid chromatography-tandem mass spectrometry fol-
lowing intravenous administration in animals[5, 6] and healthy 
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volunteers[7].  The bioavailability of MLB is extremely low; 
it has been calculated to be only 1.07%±0.43% in dogs[8] and 
0.02% in rats[9].  The elimination time (t1/2) of MLB, RA, and 
LA is 1.04, 0.75, and 2.0 h, respectively, in rats[5]; 0.71, 0.51, 
and 0.83 h in dogs[6]; and 2.33, 0.23, and 3.74 h in healthy Chi-
nese volunteers[7], following intravenous administration of S 
miltiorrhiza depside salt.  The pharmacokinetic properties of 
S miltiorrhiza depside salt are summarized in Table 1.  Given 
that MLB has been shown to have low permeability through 
Caco-2 cell monolayers, its low bioavailability could be due to 
poor absorption and metabolism[10].  Overall, extensive metab-
olism, including a first-pass effect, poor absorption, and wide 
distribution contributed significantly to MLB’s extremely low 
systemic bioavailability[9].

Cytochrome P450 isoenzymes (CYPs), the most impor-
tant phase I enzymes in the metabolism of xenobiotics, are 

involved in the metabolism of most drugs.  Recently, MLB 
was found to act as a weak inhibitor of CYP1A2 in human 
liver microsomes[11], to down-regulate CYP3A4 and CYP1A2 
mRNA expression in the absence of rifampicin and to inhibit 
rifampicin-induced CYP3A4 mRNA expression in HepG2 
cells[12].  However, Liu et al reported that MLB could signifi-
cantly transactivate the CYP3A4 reporter gene construct in 
either HepG2 or Huh7 cells and the PXR mRNA expression in 
LS174T cells[13].  These data suggest that MLB may modulate 
the metabolism of the other drugs by induction or inhibition 
of specific drug-metabolizing enzymes.  Additionally, the 
metabolism of MLB itself can be changed.  

Pharmacological actions of magnesium lithospermate B 
(MLB) 
Salvianolic acid B and lithospermic acid B were identified 

Figure 1.  Salvia miltiorrhiza depside salt and its main components.
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decades ago as the major components of danshen.  They were 
originally reported to have identical structures except for the 
configurational assignments of two stereocenters, recently 
through chemical correlation, they were shown to be the same 
compound[14].

Currently, MLB is used as a quality-control ingredient and 
active marker for danshen products by the National Pharma-
copoeia Council of China[15].  As the major component (con-
tent >85%) of S miltiorrhiza depside salt, the pharmacological 
actions of MLB have been extensively investigated.

Attenuation of atherosclerosis
A large body of evidence has demonstrated that MLB is capa-
ble of preventing the development of atherosclerosis in vivo 
and in vitro.  The in vivo evidence for the anti-atherosclerotic 
effects of MLB is compiled in Table 2.  Intimal hyperpla-
sia results from the proliferation and migration of vascular 
smooth muscle cells (VSMCs) after endothelial injury and 
excessive oxidative stress, which were significantly reduced 
by MLB treatment.  It has been found that PDGF-BB, SDF-1α, 
and high glucose could induce VSMC proliferation and migra-
tion, which were suppressed by MLB through the following 
signaling pathways: those induced by PDGF-BB was mediated 

via inhibiting the phosphorylation of PI3K/Akt and ERK[16], 
those induced by SDF-1α via suppressing the expression lev-
els of CXCR4 receptor and downstream molecules of SDF-1α/
CXCR4 axis[17], and those induced by high glucose via induc-
ing the nuclear factor erythroid 2-related factor-2 (Nrf2)-
antioxidant responsive element (ARE)-NAD(P)H:quinone 
oxidoreductase-1 (NQO1) (Nrf2-ARE-NQO1) pathway[18].  
Furthermore, MLB was able to induce VSMC apoptosis by 
up-regulating p53[19].  Most recently, Cho et al elucidated the 
mechanisms by which MLB regulates the cellular prolifera-
tion in VSMCs.  Using fluorescein isothiocyanate (FITC)-
conjugated MLB to track its cellular localization, these authors 
found that MLB bound to the non-muscle myosin heavy chain 
(NMHC-IIA), thereby allowing MLB to suppress the PDGF-
induced proliferation of VSMCs[20].  In addition to inhibit-
ing the proliferation and migration of VSMCs, subsequently 
preventing neointimal hyperplasia, many other effects are 
involved in the anti-atherogenic effects of MLB, including the 
scavenging of ROS/free radicals, attenuation of injury of the 
vascular endothelium, inhibition of inflammatory reactions, 
avoidance of lipid deposition, and modulation of the immune 
response.  
 

Table 1.  Pharmacokinetic properties of S miltiorrhiza depside salt.

       Species              
Doses

	          Pharmacokinetic                                
MLB	                       RA	                          LA	                   References

 
(administration)	                                parameters	
 
	Beagle dogs
	 (iv)	 6 mg/kg	 Tmax (h) 	  0.39±0.14	 0.39±0.1	   0.47±07	 Li et al[6]

			   Cmax (mg/L) 	 9775±1576	  874±131	    308±40
			   AUC(0–tn) (mg·L-1·h-1) 	 5097±871	  460±68	    171±27
			   AUC(0–∞) (mg·L-1·h-1) 	 5100±871	  461±68	    172±28
			   MRT(0–∞) (h)	  0.46±0.04	 0.40±0.02	   0.50±0.02
			   V/F (L/kg)	  0.44±0.13	 0.50±0.09	   0.26±0.06
			   T1/2α (h)	  0.05±0.01	 0.04±0.01	   0.07±0.01
			   T1/2β (h) 	  0.71±0.32	 0.51±0.18	   0.83±0.48
			   CL/F (L·h-1·kg-1) 	  0.39±0.20	 0.72±0.20	   0.27±0.13
	
	Rats	 60 mg/kg	 AUC(0–tn) (mg·h-1·L-1) 	  51.6±12.4	   6.6±1.8	   25.5±2.3	 Li et al[5]

	 (iv)		  AUC(0–∞) (mg·h-1·L-1) 	  52.3±12.6	   6.9±1.7	   26.6±3.1
			   MRT(0–∞) (h)	  0.55±0.09 	 0.32±0.07	   1.75±0.16
			   V (L/kg) 	  1.89±0.68 	 1.13±0.51	   0.12±0.02
			   T1/2α (h) 	  0.13±0.07	 0.12±0.04	   0.13±0.06
			   T1/2β (h)	  1.04±0.09	 0.75±0.14	   2.00±0.60
			   CL (L·h-1·kg-1) 	  1.09±0.26	 1.02±0.32	   0.04±0.01

	Human	 100 mg/kg	 Cmax (mg/L)	 4925±1861	   174±61	    361±101	 Jia et al[7]

	 (iv)		  Tmax (h)	  0.64±0.31	 0.47±0.21	   1.01±0.20			 
			   t1/2 (h)	  2.33±0.92	 0.23±0.11	   3.74±0.54
			   MRT (h)	  1.16±0.62	 0.54±0.07	   4.24±1.59
			   AUClast (ng·mL-1·h-1)	 4537±1265	  129±28	 1229±330

Ae0–24 h, excreted in 24-h urine sample as unchanged drug; AUC, area under the plasma level-time curve; Cmax, maximum concentration of drug; CL, 
systemic clearance; MRT, mean retention time; NC, not calculable; SD rat, Sprague-Dawley rat; t1/2, terminal elimination half-life; T1/2α, absorption half-
life; T1/2β, elimination half-life; Tmax, time of occurrence for maximum (peak) drug concentration.
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Table 2.  Anti-atherosclerotic effects of magnesium lithospermate B.

                  Animal models	                                                                                 Mechanisms	                                                                     References
 
	 Cholesterol-fed rabbits	 ↓ Intimal thickening	 Hung et al[19]

		  ↑ Apoptosis in neointimal restenotic lesions	
		  ↑ p53 in neointimal restenotic lesions
	
	 Cholesterol-fed rabbits	 ↑ LDL resistant to Cu2+-induced oxidation 	 Wu et al[21]

		  ↑ Vitamin E content in LDL 
		  ↓ Severity of atherosclerosis
		  ↓ Plasma cholesterol
		  ↓ Endothelial damage
	
	 ApoE–/– mice	 ↓ Iintimal thickening	 Lin et al[22]

		  ↓ MMP-2 and MMP-9 expression and activity
		  ↓ LPS-induced HASMCMMP-2 and MMP-9 expression and activity
		  ↓ ERK and JNK phosphorylation
	
	 ApoE–/– mice	 ↓ Intimal thickening	 Chen et al[23]

		  ↓ COX-2 expression
		  ↓ LPS-induced HASMC NADPH oxidase activity
		  ↓ LPS-induced HASMC PGE2 production, ICAM-1 expression
		  ↓ LPS-induced HASMC ERK and JNK phosphorylation

	 Rat model of carotid artery balloon injury	 ↓ Neointimal formation	 Hur et al[16]

		  ↓ ROS
		  ↓ PDGF-BB stimulated VSMC proliferation and migration
		  ↓ PDGF-BB stimulated VSMC PI3K/Akt and ERK phosphorylation

	 Rat model of carotid artery balloon injury	 ↓ Neointimal hyperplasia	 Pan et al[17]

		  ↓ SDF-1α-stimulated cell proliferation and migration
		  ↓ CXCR4 receptor
		  ↓ Promoter activity of NF-κB
		  ↓ Raf-1, MEK, ERK1/2, phospho-ERK1/2, FAK, and phospho-FAK

	 Cholesterol-fed rabbits	 ↓ Cu2+-induced LDL oxidation in vitro 	 Yang et al[24] 
		  ↓ HAECs-mediated LDL oxidation
		  ↓ oxLDL-induced cytotoxicity and ROS production in HAECs
		  ↓ Lipid deposition in the thoracic aorta
		  ↓ Intimal thickness of the aortic arch and thoracic aorta
		  ↓ Neointimal formation in the abdominal aorta
	
	 Carotid artery balloon injury in STZ-induced	 ↓ Diabetes-related neointimal hyperplasia	 Hur et al[18]

	     diabetic rats	 ↓ Hyperglycemia-accelerated proliferation and migration of VSMCs
		  ↑ Nrf2-ARE-NQO1 pathway

	 ApoE–/– mice	 ↓ CD36 gene expression
		  ↓ Lipid uptake in macrophages
		  ↓ Modified LDL (mLDL) uptake in PMA-stimulated THP-1 and RAW 264.7 cells	 Bao et al[25]

COX-2, cyclooxygenase-2; CXCR4 receptor, cysteine-x-cysteine chemokine receptor 4; HAECs, human aortic endothelial cells; LDL, low-density lipoprotein; 
HASMC, human vascular smooth muscle cell; ICAM-1, intercellular adhesion molecule 1; LPS, lipopolysaccharide; MMP, matrix metalloproteinase; Nrf2-
ARE-NQO1, nuclear factor erythroid 2-related factor-2 (Nrf2)-antioxidant responsive element (ARE)-NAD(P)H:quinone oxidoreductase-1 (NQO1); oxLDL, 
oxidized LDL; PDGF, platelet-derived growth factor; PMA, phorbol-12-myristate-13-acetate; ROS, reactive oxygen species; VSMC, vascular smooth muscle 
cell; STZ, streptozotocin.
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Free radical scavenging and anti-oxidant activity 
MLB exhibited iron chelating and scavenging activities against 
free hydroxyl radicals (HO·), superoxide anion radicals (O2·̄ ), 
1,1-diphenyl-2-picryl-hydrazyl (DPPH) radicals, 2-azino-
bis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS) radicals 
and hydrogen peroxide (H2O2)[26], as well as xanthine oxidase 
inhibitory activity[27].  Intracellular and extracellular oxida-
tive stress can induce oxidative modification of low-density 
lipoprotein (LDL) to oxLDL, one of the important substances 
that drive intimal immune cell infiltration.  Inhibiting the for-
mation of oxLDL is beneficial in preventing the development 
of atherosclerosis[28].  It was found that MLB inhibited serum 
LDL oxidation[24], and MLB-treated LDL exhibited vitamin 
E-binding ability and was resistant to Cu2+-induced oxida-
tion[21].  These studies suggest that MLB can attenuate patho-
logical increases in the peroxidation of lipids, thus suppress-
ing the development and progression of atherosclerosis.  Con-
sistent with this line of evidence, our previous study showed 
that MLB prevented auto-oxidation and Fe2+/VitC induced 
lipid peroxidation in rat serum, liver, kidney, heart, and brain 
homogenates in vitro and exerted similar effects in an ex vivo 
experiment with the exception of brain homogenate[29].  In 
addition to preventing lipid oxidation, the scavenging of ROS 
contributes to the effects of MLB on preventing injury-induced 
neointimal formation in rats and in cholesterol-fed rabbits, 
inhibiting VSMC proliferation and migration, and preventing 
human aortic endothelial cells from oxidative injury-mediated 
cell death[16, 24].

It has been shown that MLB suppresses NADPH oxidase 
activity, subsequently reducing ROS generation in response 
to TNF-α, H2O2, and Ang-II in human aortic smooth muscle 
cells (HASMCs)[30]; MLB has also been shown to directly 
reduce excessive ROS generated by high glucose through the 
enhancement of high glucose-induced Nrf2 action and the 
subsequent heme oxygenase-1 expression in HEK293T cells[31].  
Moreover, the entire Nrf2-ARE signaling pathway has been 
found to be involved in the antioxidative effects of MLB.  In 
that study, MLB acted at least in part by activating the Nrf2-
ARE-NQO1 pathway and also restored redox balance during 
hyperglycemia-induced chronic oxidative stress[18].  Thus, we 
believe that the prevention of oxidative stress and related vas-
cular complications by MLB contributes to its anti-atheroscle-
rotic effects.

Preventing endothelial dysfunction 
The death or injury of endothelial cells (ECs) may contribute 
to the initial endothelial pathophysiological processes, such 
as angiogenesis, atherosclerosis, and thrombosis.  MLB was 
found to attenuate the endothelial damage in cholesterol-fed 
rabbits[21] and to protect human endothelial cells from oxida-
tive stress-induced damage via inducing the expression of 
glucose-regulated protein 78 (GRP78)[32], thus suggesting that 
MLB could maintain the integrity of the initial endothelium.  
Endothelial injury leads to a significant increase in LDL per-
meability, which plays a role in the formation and develop-
ment of atherosclerosis.  MLB inhibited the VEGF-induced 

LDL permeability of ECs[33] and reduced the TNF-α-induced 
permeability and disorganization of vascular endothelial-
cadherin in ECs by decreasing VEGF protein expression via 
modulation of the ERK pathway[34].  Loss of the cell-cell adher-
ence junction also increases endothelial permeability.  MLB 
could attenuate TNF-α-induced tyrosine phosphorylation of 
junctional proteins, including vascular endothelial cadherin 
and β-catenin.  An immunoprecipitation study showed that 
MLB prevented β-catenin disassociation from the cytoskeleton 
in TNF-α-treated HUVECs[35].  In addition to reducing the 
endothelial permeability, MLB also modulated the hemostatic 
properties of ECs.  MLB increased the fibrinolytic and antico-
agulant potential of cultured HUVECs by up-regulating the 
expression of tissue-type plasminogen activator (t-PA) and 
thrombomodulin (TM) and down-regulating the expression of 
plasminogen activator inhibitor type 1 (PAI-1)[36].  The NF-κB 
and ERK-AP-1 pathways were considered possible targets of 
MLB in the attenuation of the PAI-1 production response to 
TNF-α in HUVECs[37].  

Atherogenic recruitment of leukocytes involves a sequence 
of rolling, firm adhesion, lateral migration and transend-
othelial diapedesis and is controlled by chemokines.  During 
atherosclerosis, circulating monocytes and lymphocytes may 
interact with adhesion molecules, such as vascular adhesion 
molecule-1 (VCAM-1), intercellular adhesion molecule-1 
(ICAM-1) and E-selectin on ECs, to establish firm adhe-
sion, which may be an early event in atherogenesis.  MLB 
pretreatment notably attenuated TNF-α-induced expression 
of VCAM-1 and ICAM-1 and the binding of monocytes to 
HAECs, which was associated with its anti-inflammatory 
property through inhibition of the NF-κB pathway[38, 39].  In 
IFN-γ-treated ECs, MLB inhibited IFNγ-induced JAK-STAT 
signaling pathways and consequently suppressed IFN-γ-
induced expression of chemokines (including IP-10, Mig, 
and I-TAC), IP-10 promoter activity, IP-10 protein release, 
and monocyte adhesion to ECs[40].  These studies support the 
potential clinical application of MLB in vascular inflammatory 
diseases, including atherosclerosis.

MLB regulates vascular homeostasis by exerting a num-
ber of vasoprotective effects, including the stimulation of 
vasodilation, suppression of VSMC proliferation, and inhibi-
tion of inflammatory responses.  Many of these effects are 
mediated by the most potent endogenous vasodilator, NO.  
Endothelial cell-derived NO acts as an important mediator 
in the cardiovascular, nervous, and immune systems[41].  Our 
previous studies showed that MLB could inhibit Ca2+ influx 
and stimulate NO production in ECs treated with hypoxia/
reoxygenation, which in turn could attenuate cell injury[42].  
MLB could also inhibit Ca2+ influx and decrease NO release 
in ECs exposed to hypoxia and attenuate cell injury in ECs[43].  
In HUVECs, MLB enhanced NO production via the AMPK/
PI3K/Akt pathway[44].  MLB was also found to produce 
endothelium-dependent vasodilation by regulating NO pro-
duction through the modulation of heme oxygenase-1 and 
arginase activities[41].  

Taking all these data together, we conclude that MLB dimin-
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ishes endothelial dysfunction through up-regulating anti-
inflammatory responses and promoting vasodilation, which 
may contribute to the prevention and treatment of various 
cardiovascular disorders, including atherosclerosis.

Anti-inflammatory effects and regulation of matrix metallopro
teinases expression and activity
The inflammatory response is involved in the pathogenesis of 
atherosclerosis, and the initial degradation of the extracellular 
matrix (ECM) is an inevitable step for vascular cell hyper-
trophy, proliferation, and migration, which in turn plays an 
important role in vascular remodeling and contributes to the 
vulnerability of atherosclerotic plaques to rupture.  Vascular 
cells, including SMCs, can secrete matrix metalloproteinases 
(MMPs), the enzymes that selectively digest the individual 
components of the ECM.  MLB treatment effectively attenu-
ated MMP-2, MMP-9[22], and COX-2[23] protein expression in 
cholesterol-fed ApoE–/– mice, which was related to the reduced 
thickness of the intima and protection of these mice against 
atherosclerosis.  In HASMCs, MLB reduced the LPS-induced 
MMP-2 and MMP-9 expression via downregulating the JNK 
and ERK signaling pathways[22] and inhibited the LPS-induced 
COX-2 expression via reducing PGE2 production, ICAM-1 
expression and NADPH oxidase activity[23].  Furthermore, 
MLB also inhibited MMP-2 expression and activity in response 
to TNF-α, Ang II, and H2O2 in HASMCs via reducing NADPH 
oxidase-dependent ROS generation[30].  Moreover, MLB down-
regulated the SDF-1α-stimulated up-regulation of CXCR4 
(total and cell-surface levels), Raf-1, FAK, and phospho-FAK, 
as well as the promoter activity of NF-κB, which provided a 
beneficial effect against the counteracting effects of inflamma-
tion on VSMCs[17].  These studies demonstrate that MLB can 
stabilize arterial atherosclerotic plaques and reduce the risk of 
coronary heart disease.

Modulation of lipid profiles
In cholesterol-fed rabbits, MLB treatment attenuated the 
increase in plasma cholesterol predominantly in β-VLDL[21].  
MLB treatment was also found to decrease the atherosclerotic 
area, cholesterol deposition[21, 24] and lipid levels of aortic ves-
sels[25].  However, MLB does not exert obvious lipid-lowering 
effects.  The relationship between lipid lowering and the 
atheroprotective effects of MLB is still unclear.  Because dys-
lipidemia is one of the main risk factors that lead to atheroscle-
rosis, further investigations are required to explore the effects 
of MLB on cholesterol metabolism.

Potential immunomodulators
The activation of T lymphocytes plays a promoting role in the 
inflammatory processes of atherosclerotic diseases, and func-
tional, immune-stimulating dendritic cells (DCs) have recently 
been detected in the aortic intima, the site of origin for athero-
sclerosis.  Immunosuppressive methotrexate for treatment of 
atherosclerosis is currently under investigation[28].  One study 
found that MLB effectively suppressed maturation of human 
monocyte-derived dendritic cells (h-monDC) induced by ox-

LDL through activation of PPARγ[45] and inhibition of IL-2, 
IL-4, TNF-α, and IFN-γ production from activated T cells[46]; 
MLB also effectively reduced the expression of T cell activation 
markers CD25 and CD69[46].  With molecular modeling, MLB 
was found to act as an inhibitor of protein-protein interactions 
between the SH2 domains of the Src-family kinases, Src and 
Lck.  The potency of MLB binding to Src and Lck was higher 
than RA, a natural compound known as the Lck SH2 domain 
inhibitor[47].  Because Lck is a T cell-restricted Src family pro-
tein tyrosine kinase, and inhibition of the Lck SH2 domain 
has been suggested as a possible mechanism underlying the 
immunosuppressant activity of RA, it appears that MLB may 
act as an immunosuppressive agent[48].  

CD36, a member of the class B scavenger receptors, is a high-
affinity receptor for oxidatively modified low-density lipopro-
tein (oxLDL) and has been implicated in the pathogenesis of a 
variety of vascular inflammatory diseases.  MLB was found to 
be antagonistic against CD36-oxLDL binding, which was fur-
ther validated by its inhibition of oxLDL uptake in RAW 264.7 
cells[49].  Yi et al confirmed the specificity and efficacy of MLB 
in inhibition of CD36-mediated lipid uptake in vitro and in vivo 
and demonstrated that MLB was an effective CD36 antago-
nist[25].  These results support a role for MLB as an immune 
modulator with cardioprotective effects, which would increase 
its therapeutic potential in atherosclerotic pathologies.

Protecting against myocardial ischemia and reperfusion (I/R) 
injury
Cardiac glycosides are drugs that are clinically used to relieve 
the symptoms of congestive heart failure via their reversible 
inhibition on Na+/K+-ATPase located in human myocardium.  
However, narrow safety margins and severe side effects make 
administration of these drugs difficult.  MLB is a non-steroid 
compound possessing inhibitory activity against Na+/K+-
ATPase with potency comparable to that of cardiac glycosides 
but without the apparent adverse effects.  Therefore, MLB 
has great potential in the treatment of congestive heart fail-
ure, provided that it undergoes the necessary clinical trials[50].  
MLB has been found to exert protective effects on the heart in 
various animal models.  In a porcine model of myocardial I/R, 
MLB increased capillary density and decreased infarct size[51].  
In C57 mice, MLB was found to inhibit cardiac hypertrophy 
and infarction and to improve cardiac function at 4 weeks 
after induction of the infarction[44].  In rats with left anterior 
descending coronary artery ligation, MLB treatment effec-
tively improved left ventricle (LV) function and the appear-
ance of the myocardium as compared with a group with acute 
myocardial infarction (AMI)[52, 53]; MLB treatment also pre-
vented myocardial remodeling, a deleterious consequence of 
myocardial infarction (MI), by significantly down-regulating 
the mRNA expression level and activity of MMP-9[52].  MLB 
was found to bind to MMP-9 at the catalytic domain and to 
function as a competitive inhibitor of MMP-9[54] and thus 
could attenuate the enhancing effects of MMP-9 on migration, 
proliferation, collagen synthesis, cytokine secretion, as well 
as the association between cardiac fibroblasts and myofibro-
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blast transition[55].  Metabolomics offers a new approach to the 
research of traditional Chinese medicines.  Lu et al, who ana-
lyzed plasma from MI rats and built partial least-squares dis-
criminate analysis (PLS-DA) models, found that MLB was able 
to regulate 22 identified MI biomarkers in rat plasma[56]; this 
biomarker pattern was similar to the metabolomic profile of 
propanolol, indicating that the two drugs might have similar 
mechanisms.  They further demonstrated that MLB exhibited a 
protective effect on MI mainly by decreasing the concentration 
of cAMP and Ca2+ and inhibiting PKA[57].

 The cardioprotection of MLB could benefit from improv-
ing myocardial cell function and/or preventing myocardial 
cell death.  MLB seems to have pleiotropic effects and may 
act on multiple molecular targets to exert its protection effect 
on cardiomyocytes.  We found that MLB reversibly inhibited 
L-type Ca2+ current (ICa,L) without significant effects on the 
fast-inactivating Na+ current (INa), delayed rectifier K+ current 
(IK) and inward rectifier K+ current (IK1) in single ventricular 
myocytes of adult guinea pigs, suggesting that the voltage-
dependent Ca2+ antagonistic effects of MLB work together with 
its antioxidant action for attenuating heart ischemic injury[58].  
Furthermore, it was found that MLB administration signifi-
cantly decreased myocardiocyte apoptosis during I/R via 
interactions with multiple targets, including elevating super-
oxide dismutase activity, thioredoxin activity and glutathione 
concentration; reducing malondialdehyde concentration[51]; 
direct/indirect inhibiting stress-activated protein (SAP) kinase 
activity and nuclear translocation of the active kinase[59]; 
inhibiting the poly (ADP-ribose) polymerase-1 pathway and 
improving the integrity of mitochondria and nuclei of heart 
tissue[53].  It was also reported that MLB prevented LPS-induced 
neonatal cardiomyocyte injury through inhibition of the TLR4-
NF-κB-TNF-α pathway[60] and protected against cardiotoxicity 
of doxorubicin in mice through blockade of oxidative stress[61].  
More recently, MLB was found to protect starving cardiomyo-
cytes by blocking the early stage of autophagic flux and inhib-
iting the apoptosis that occurred during autophagy[62].  

In addition to exerting direct benefit effects on a heart 
undergoing I/R, MLB can protect the heart from I/R injury 
through indirect effects, as described below.  

First, MLB attenuates the risk of I/R via anti-atherosclerotic 
properties (see the section “Attenuation of atherosclerosis”).  

Second, MLB produces vasodilator and vasorelaxant effects.  
Studies from our group and those of others have demon-
strated that these effects result from attenuating intracellular 
Ca2+ concentrations ([Ca2+]i) in VSMCs[63], inhibiting Ca2+ chan-
nels in the VSMCs with a minor component mediated by the 
opening of K+ channels[64], decreasing [Ca2+]i by inhibiting K+ 

currents and depolarizing membrane potential in ECs[65], acti-
vating large-conductance Ca2+-activated K+ (BKCa) currents 
in smooth muscle cells[66, 67], and inhibiting KV currents chan-
nels in smooth muscle cells and increasing NO release from 
endothelium[44, 67].  

Third, MLB produces antiplatelet, anticoagulant and anti-
thrombotic effects.  In myocardial ischemic rabbits, MLB 
significantly reduced whole-blood and plasma viscosity, 

improved hemorheology, prevented angiospasm and platelet 
aggregation, and reduced oxidative injury[68].  MLB was also 
found to delay thrombus-initiation time and damp photo-
chemical reaction–inducedmast cell degranulation in rat mes-
entery[69].  Our previous study showed that MLB decreased 
the thrombin-activated release of 5-HT and aggregation in 
rabbit platelets, probably by attenuating [Ca2+]i

[70].  MLB also 
inhibited platelet aggregation induced by high shear stress[71].  
Wu et al attributed the antiplatelet effect of MLB to a specific 
interaction with the platelet collagen receptor α2β1[72].  Ma et al 
further demonstrated that the binding of MLB to integrin α2β1 
caused changes in [Ca2+]i, the levels of cytoskeleton-related 
proteins such as coronin-1B and the cytoskeletal structure of 
platelets, and therefore concluded that integrin α2β1 might be 
one of the direct target proteins of MLB in platelets[73].  

Fourth, MLB improved myocardial microperfusion[74], myo-
cardial microvascular reflow[51], as well as coronary blood 
flow[68].  MLB also possessed antihypertensive effects partly 
due to inhibiting angiotensin converting enzyme activity[75].

Finally, MLB protected bone marrow stem cells from apop-
tosis[76] and synergized with vitamin C in inducing embryonic 
stem cell differentiation into matured and functional cardio-
myocytes[77].

Other pharmacological actions
In addition to its effects on the cardiovascular system, MLB 
has other pharmacological actions as discussed below.  

Preventing cerebral ischemia-reperfusion injury and neuro
degeneration
Cerebral ischemia-reperfusion (I/R) injury is the main reason 
for the loss of neurons in ischemic cerebrovascular disease.  
In focal cerebral I/R rats, MLB treatment protected the brain 
against I/R injury by reducing lipid peroxides, scavenging free 
radicals and improving energy metabolism[78].  MLB exerted 
neuroprotection against ischemic stroke by inhibiting the Na+/
K+-ATPase via binding to the extracellular pocket of the Na+/
K+-ATPase α subunit and then promoting blood circulation[79].  
The anti-apoptotic effect of MLB on rheologically induced 
endothelial injury probably also contributes to its effectiveness 
in the treatment of cerebrovascular diseases[80].

Alzheimer’s disease (AD) and Parkinson’s disease (PD) 
are common degenerative brain disorders.  One of the major 
pathological features of AD is the appearance of senile 
plaques characterized by extracellular aggregation of amyloid 
β-peptide (Aβ) fibrils.  Inhibition of Aβ fibril aggregation is 
therefore regarded as one possible method to halt the pro-
gression of AD.  MLB was found to inhibit fibril aggregation 
as well as to destabilize the preformed Aβ fibrils.  Moreover, 
preincubation with MLB significantly reduced the cytotoxic 
effect of Aβ1–42 on human neuroblastoma SH-SY5Y cells[81].  
Interestingly, MLB was found to alleviate the memory impair-
ments induced by cholinergic dysfunction or Aβ25–35 peptide 
owing to its antagonism of GABAA receptors[82].  MLB was also 
found to protect rat cerebral microvascular endothelial cells 
(rCMECs) against H2O2-induced apoptosis through the PI3K/
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Akt/Raf/MEK/ERK pathway, which may partly contribute to 
its beneficial effects on AD[83], given that rCMECs apoptosis is 
considered partially responsible for the pathogenesis of AD.  

PD is associated with mitochondrial dysfunction, oxida-
tive stress, and activation of the apoptotic cascade.  MLB was 
found to exert protective effects on MPP+-induced apoptosis 
in SH-SY5Y cells (a classic in vitro model for PD) by relieving 
oxidative stress[84].  These observations suggest that MLB has 
therapeutic potential for the treatment of neurodegenerative 
diseases.

Inhibitory effects on liver fibrosis 
In a double-blind trial consisting of 60 patients, MLB was 
found to effectively reverse liver fibrosis in chronic hepatitis B, 
and it was more effective than the control drug, IFN-γ, in the 
reduction of serum HA content, overall decrease of 4 serum 
fibrotic markers, and decrease of ultrasound imaging score 
without side effects or toxicity[85].  Hepatic fibrosis is character-
ized by hepatic stellate cell (HSC) activation.  It was reported 
that MLB inhibited HSC proliferation and collagen produc-
tion, decreased the cells’ TGF-β1 autocrine levels, amelio-
rated oxidative damage and eliminated ROS accumulation in 
hepatocytes[86].  MLB was also found to significantly attenuate 
liver fibrosis and activation of HSCs in thioacetamide-induced 
hepatic fibrosis in rats[87, 88].  Taken together, these results sug-
gest that MLB may be used as an effective anti-fibrotic agent 
in the treatment of hepatic fibrosis.

Improving renal function and preventing diabetic nephropathy 
Tubular epithelial cells can undergo an epithelial-to-mesen-
chymal transition (EMT), which plays an important role in the 
pathogenesis of renal interstitial fibrosis (RIF).  MLB not only 
prevented and reversed EMT in HK-2 cells[89, 90] but also pre-
vented tubular EMT in HgCl2-induced fibrosis in kidneys[91].  
Our data showed that MLB ameliorated renal cortical micro-
circulation[92] and inhibited mesangial cell proliferation[93], 
which may be related to the drug’s renoprotective effects.

Diabetic nephropathy, a common cause of renal disease, 
accounts for significant morbidity and mortality in patients 
with diabetes.  In in vitro studies, MLB was found to inhibit 
the high glucose-induced proliferation of mesangial cells and 
extracellular matrix production, partially through suppress-
ing the cell-cycle process, and also inhibited the activities of 
MMP-2 and MMP-9 via the NF-κB-dependent pathway[94].  
MLB also inhibited glucose-induced ROS generation and 
subsequent PKC inactivation and TGF-β1 and fibronectin 
downregulation in mesangial cells[95].  In in vivo studies, MLB 
treatment effectively inhibited diabetes-associated TGF-β1, 
fibronectin and collagen upregulation in the renal cortex and 
significantly suppressed the progression of renal injury in 
streptozotocin-induced diabetic rats (STZR)[95].  Similar effects 
were found in Otsuka Long-Evans-Tokushima Fatty (OLETF) 
rats with type 2 diabetes[96].  The results of these studies sug-
gest that MLB may be a promising therapeutic agent for pre-
venting and treating diabetic nephropathy.

Pharmacological actions of rosmarinic acid (RA)
Both in vitro and in vivo studies show that RA possesses anti-
oxidant activity as well as anti-inflammatory activities[97, 98], 
which results in the multiple pharmacological actions of RA; 
this multi-target mechanism is similar to that described previ-
ously for MLB.  

Pharmacological properties of RA on the cardiovascular system
First, RA can prevent cardiomyocyte dysfunction.  It has been 
reported that RA could inhibit adriamycin-induced apoptosis 
in H9c2 cardiac muscle cells by inhibiting ROS generation and 
JNK and ERK activation[99].  RA also prevented cardiopathol-
ogy and lowered blood pressure in fructose-fed hypertensive 
rats as a result of inhibition of p22phox NADPH oxidase[100].  
Second, our results showed that RA possessed a potential 
vasolilator effect due to decreasing [Ca2+]i in VSMCs.  More-
over, RA did not affect the basal level of [Ca2+]i but instead 
attenuated ATP-stimulated [Ca2+]i increases in the absence of 
external Ca2+ and reduced KCl-induced [Ca2+]i increases in the 
presence of external Ca2+[63].  Third, RA was found to reduce 
the risk of MI via its anti-atherosclerotic properties, and it 
could penetrate membranes to inhibit lipid peroxidation in situ 
without causing any noticeable alteration of the membrane 
structure[101].  The immunoregulatory activities of RA may also 
contribute to its anti-atherosclerotic effects.  RA was found to 
induce apoptosis of activated T-cell subsets from rheumatoid 
arthritis patients via a mitochondrial pathway[102], to inhibit 
TCR-induced T-cell activation and proliferation[48], and to sup-
press IFN-γ-mediated induction of indoleamine 2,3-dioxyge-
nase transcription via down-regulation of STAT1 activation 
in IFN-γ-stimulated murine bone marrow-derived dendritic 
cells[103].

Other pharmacological findings
In addition to the benefits to the cardiovascular system, RA 
has other pharmacological effects.  (1) Due to its scavenging 
of peroxynitrite (ONOO−), daily consumption of RA exhibited 
protective effects against the memory impairments caused 
by the neurotoxicity of Aβ25–35

[104].  In addition, it has been 
reported that RA could protect MES23.5 dopaminergic cells 
against 6-OHDA-[105] or MPP+[106]-induced neurotoxicity in 
vitro and achieve neurorescue effects in 6-ODHA-lesioned rat 
model of PD in vivo[107].  (2) RA has an early renal protective 
role in nephritic damage.  RA was found to be potent in the 
treatment of diabetic nephropathy.  It reduced expression of 
renal connective-tissue growth factor (CTGF) in STZ-induced 
rat animal models and in high glucose-stimulated HK-2 
cells[108].  (3) RA treatment in mice with existing cholestatic 
liver fibrosis inhibited HSC activation and progression of liver 
fibrosis via PPARγ derepression mediated by suppression of 
canonical Wnt signaling in HSCs[109].  

Pharmacological actions of lithospermic acid (LA) 
LA is a competitive inhibitor of xanthine oxidase that is able 
to directly scavenge superoxide and inhibit superoxide pro-
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duction in vitro and thus exhibits hypouricemic and anti-
inflammatory actions in vivo[110].  Our group reported that LA 
exerted vasodilator action by modulating Ca2+ homeostasis in 
VSMCs[63] and prevented atherosclerosis by inhibiting VSMC 
proliferation and migration[111].  

Summary and perspectives 
S miltiorrhiza depside salt has been widely prescribed for 
years.  Further investigations to elucidate the mechanisms 
underlying the protective actions of S miltiorrhiza depside salt 
and its effects on cardiovascular diseases (CVDs) are under 
way in our laboratory.  The drug comprises three safe and 
effective components with multiple pharmacological actions, 
accounting for its pleiotropic pharmacological effects, and it 
may act at multiple molecular targets, mainly because of its 
anti-inflammatory and anti-oxidative activities.  Currently, S 
miltiorrhiza depside salt is used primarily for treating CVDs 
and other circulatory disturbance-related diseases.

Combining S miltiorrhiza depside salt with drugs used to 
treat hepatic fibrosis (ie, malotilate) may enhance their thera-
peutic effects.  Combining S miltiorrhiza depside salt with 
antidiabetic drugs reduces the severity of complications of dia-
betes, such as diabetic nephropathy and diabetic atheroscle-
rosis.  However, the possibility that such combinations may 
result in adverse drug interactions must be taken into account.
Targeting cellular functions as a system rather than at the 
single-target level significantly increases therapeutic potency.  
Further research is warranted to address the mechanisms of 
the multitarget actions of S miltiorrhiza depside salt and to 
translate this knowledge into clinical practice.  
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